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[1] Model applicability to core-scale solute transport is evaluated using breakthrough data
from column experiments conducted with conservative tracers tritium ð3HÞ and sodium-22
ð22Na Þ, and the retarding solute uranium-232 ð232UÞ. The three models considered are
single-porosity, double-porosity with single-rate mobile-immobile mass-exchange, and the
multirate model, which is a deterministic model that admits the statistics of a random
mobile-immobile mass-exchange rate coefficient. The experiments were conducted on
intact Culebra Dolomite core samples. Previously, data were analyzed using single-porosity
and double-porosity models although the Culebra Dolomite is known to possess multiple
types and scales of porosity, and to exhibit multirate mobile-immobile-domain mass
transfer characteristics at field scale. The data are reanalyzed here and null-space Monte
Carlo analysis is used to facilitate objective model selection. Prediction (or residual) bias is
adopted as a measure of the model structural error. The analysis clearly shows single-
porosity and double-porosity models are structurally deficient, yielding late-time residual
bias that grows with time. On the other hand, the multirate model yields unbiased
predictions consistent with the late-time �5=2 slope diagnostic of multirate mass transfer.
The analysis indicates the multirate model is better suited to describing core-scale solute
breakthrough in the Culebra Dolomite than the other two models.

Citation: Malama, B., K. L. Kuhlman, and S. C. James (2013), Core-scale solute transport model selection using Monte Carlo
analysis, Water Resour. Res., 49, 3133–3147, doi:10.1002/wrcr.20273.

1. Introduction

[2] During the last 30 years, significant effort has been
expended to understand contaminant transport in fractured
rock [Huyakorn et al., 1983; Sun and Buscheck, 2003] due
in part to the necessity to evaluate site suitability for nu-
clear waste disposal. Contaminant transport in fractured
rock is of common concern to regulators and stakeholders
at nuclear waste disposal sites because off-site contaminant
migration could impact groundwater resources. Modeling
contaminant transport in fractured rock is challenging due
to the complex and inherently heterogeneous nature of the
transport domain, and the multitude of physical and chemi-
cal processes controlling contaminant interaction with the
host rock. This has led to a development of several poten-
tially competing conceptualizations of the transport envi-
ronment [van Genuchten and Wagenet, 1989; Zheng et al.,
2010]. Model selection is typically based on subjective
expert judgment. Hence, there is a need for objective crite-
ria for selecting physically based models that best describe

observed transport behavior and provide minimal predic-
tive uncertainty.

[3] In this work, we present a criterion for selecting
between competing models for describing transport at the
core scale. Three models are considered: the single-poros-
ity model; the traditional double-porosity model with sin-
gle-rate mobile-immobile domain mass exchange [van
Genuchten and Wagenet, 1989; Gamerdinger et al., 1990],
and; a double-porosity model with multiple rates of mo-
bile-immobile-domain mass exchange controlled by a ran-
dom mass transfer coefficient [Haggerty and Gorelick,
1995, 1998]. We refer to the traditional double-porosity
model as simply the double-porosity model, and to the
model with multiple rates of mass exchange as the multi-
rate model following Haggerty and Gorelick (1995);
Haggerty et al. (2000) and Meigs et al. (2000). In the multi-
rate model, the mass transfer coefficient is a random vari-
able, not a single deterministic parameter. This
conceptualization reflects spatial, not temporal, variability
(due to heterogeneity, i.e., multiple types and scales of po-
rosity). The probability density function of the transfer
coefficient gives the probability that a mobile-immobile
interface (assumed to be randomly distributed in space),
encountered by a particle along its trajectory through the
transport domain, has a particular mass transfer coefficient
value.

[4] The three models are used to analyze breakthrough
data collected in core-scale laboratory experiments [Lucero
et al., 1998] using conservative tracers tritium ð3HÞ and so-
dium-22 ð22Na Þ, and the retarding tracer uranium-232
ð232UÞ. The experiments analyzed herein were performed
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on a rock core collected from a formation known to exhibit
multiple types and scales of rock-matrix porosity. Previous
analysis of the experimental data with single-porosity and
double-porosity models by Lucero et al. (1998) yielded
poor model fits to these data due to the inability of the two
models to describe the long-tailing behavior of conserva-
tive solutes. The multirate model has been shown to prop-
erly describe this behavior in breakthrough data obtained in
field-scale tracer tests [Meigs and Beauheim, 2001; Hagg-
erty et al., 2001; McKenna et al., 2001]. It is applied herein
for the first time to core-scale breakthrough data to demon-
strate multirate mass-transfer effects are observable at this
scale.

[5] Null-space Monte Carlo analysis (NSMC) is used
to evaluate model prediction uncertainty for each of the
three model based on breakthrough data. It yields multi-
ple sets of parameters that calibrate the model [Tonkin et
al., 2007; Tonkin and Doherty, 2009; James et al., 2009;
Gallagher and Doherty, 2007], leading to multiple real-
izations of model fits to data at parameter estimation opti-
mality. By prediction uncertainty, we mean the variance
and bias of the ensemble of these model-prediction real-
izations relative to observed behavior. Variance describes
the scatter of realizations about mean behavior, while the
residuals bias associated with each data point at optimal-
ity over all NSMC realizations provides a measure of the
systematic departure of predicted from observed behav-
ior. This work presents the first use of residual bias in the
solute transport literature as a criterion for model
selection.

2. The Multirate Transport Model

[6] The multirate model is based on the traditional dou-
ble-porosity model where the transport domain is concep-
tualized as comprising two overlapping continua, namely
the mobile (advective or fracture porosity) and immobile
(diffusion-dominated matrix porosity) domains. Unlike the
traditional double-porosity model where a single determin-
istic constant is used to characterize mobile-immobile-
domain mass exchange, a random variable is used in the
multirate model. Using this conceptual approach, the gov-
erning equation for transport of a sorbing radionuclide in
the mobile domain [Haggerty and Gorelick, 1995, 1998] is
given in nondimensional form
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where C ¼ c=Cc;Cim ¼ cim =Cc;X ¼ x=Lc; T ¼ t=Tc; c
and cim are mobile- and immobile-phase solute concen-
trations M L�3

� �
; x and t are space-time coordinates,

Cc; Lc, and Tc are characteristic concentration, length,
and time, �D ¼ �Tc; � is the first-order radioactive decay
constant T�1

� �
; !D ¼ !Tc is the dimensionless first-order

mass-transfer rate coefficient (Damköhler-I number),
� !Dð Þ ¼ �T p !Dð Þ is the rock matrix point capacity ratio,
�T ¼ �im Rim =�mRm is the dimensionless rock-matrix
total capacity ratio, p !Dð Þ is the probability density func-
tion (pdf) of !D; Pe ¼ Lc=�L is the P�eclet number, �L is

the longitudinal dispersivity [L], �m and �im are the mobile-
and immobile-domain porosities, and Rm and Rim are the
mobile- and immobile-domain retardation factors.

[7] The dimensionless governing equation for immobile
domain transport is

@Cim

@T
¼ !D C � Cimð Þ � �DCim ; ð2Þ

the lumped-parameter formulation of immobile-domain
mass transport.

[8] The transport equations are solved subject to the ini-
tial condition

C X ; T ¼ 0ð Þ ¼ Cim T ¼ 0ð Þ ¼ C0; ð3Þ

indicating initial equilibrium between mobile and immo-
bile-domain concentrations. The boundary condition at
X¼ 0 is
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where Cinj is a normalized injection concentration and A
[L] and B are parameters to specify the X¼ 0 boundary
condition type (A ¼ 0 and B¼ 1 correspond to a Dirichlet
boundary condition, while A ¼ �D=v and B¼ 1 corre-
spond to a Robin boundary condition). The downstream
boundary condition is

lim
X!1

� 1
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@C

@X
þ C

� �
¼ 0; ð5Þ

indicating zero solute flux infinitely far downstream.
[9] The solution to (1)–(5) is obtained on a semi-infinite

domain 0 � X <1 as a simplification and limiting case of
the finite domain considered by Haggerty and Gorelick
(1995, 1998). It is given by

C Xð Þ ¼ C inj � BCp

Bþ uA=Lc

� �
euX þ Cp; ð6Þ

where the overbar indicates a Laplace transformed function, s is the

Laplace transform parameter, u ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4f 1=P
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[10] The function g �Dð Þ is the Laplace transformed
memory function of Haggerty et al. (2000). For single-po-
rosity g �Dð Þ � 0, whereas for double-porosity with single-
rate mass transfer g �Dð Þ ¼ !D= sþ �D þ !Dð Þ. The inverse
Laplace transform of (6) is obtained using the de Hoog
et al. (1982) algorithm. For all results reported herein,
Cc ¼ cinj is the injection concentration, Lc is core length,
and Tc ¼ Lc=vR, where vR ¼ v=Rm and v is the average lin-
ear velocity L T�1

� �
.
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2.1. Mass-Transfer Coefficient Distribution

[11] To evaluate the memory kernel g �Dð Þ numerically,
the probability density function p !Dð Þ must be specified.
All valid probability density functions are admissible in the
computation of the memory function, including single-pa-
rameter distributions such as the power-law used by Hagg-
erty et al. (2000) and Schumer et al. (2003). However,
single-parameter distributions may not lead to improved
multirate model predictions of breakthrough behavior com-
pared to the single-rate mass transfer model. Here, without
loss of generality, we use the lognormal distribution
because several key geological properties appear to approx-
imately follow this distribution [Haggerty and Gorelick,
1998], including hydraulic conductivity [Neuman, 1982;
Hoeksema and Kitanidis, 1985] and grain size [Buchan et
al., 1993]. Other equally valid examples of distributions
that have been used in the literature to characterize the mo-
bile-immobile mass transfer coefficients are summarized in
Haggerty et al. (2000). Using any of these models with two
or more parameters would likely yield multirate models
that outperform the single-porosity and single-rate double-
porosity models.

[12] The standard two-parameter lognormal distribution
for !D 2 0;1½ Þ was used by Haggerty and Gorelick (1995,
1998). For the case where physical bounds exist
!D 2 !D;min ; !D;max

� �
, it may be more appropriate to use

the random variable !̂D ¼ 1=!D � 1=!D;max

� 	�1 � !D;min ,
where !D;min and !D;max are the minimum and maximum
physically allowable !D values. The pdf of !̂D is

p !̂Dð Þ ¼ 1

!̂D�̂
ffiffiffiffiffiffi
2�
p exp � log !̂Dð Þ � �̂

�̂
ffiffiffi
2
p

� �2
" #

; ð8Þ

where �̂ and �̂ are the mean and standard deviation of
log !̂Dð Þ. This is the lower- and upper-tail-truncated log-
normal distribution, which is a more plausible distribution
when there are physical limits on permissible Damköhler-I
numbers. These physical limits may be estimated from
data. In the limit as !D;min ! 0 and !D;max !
1; !̂D ! !D, and p !̂Dð Þ degenerates to the standard two-
parameter lognormal distribution. We set !D 2 0; 1000½ �,
loosely based on the work of Haggerty and Gorelick
(1995), where !D ¼ 100 was suggested as the limit for sig-
nificant multirate mass transfer.

3. Application to Core-Scale Breakthrough Data

[13] The data considered here were collected in a series
of column experiments conducted on five intact cores
(denoted A through E) of the Culebra Dolomite as reported
by Lucero et al. (1998). The Culebra Dolomite member of
the Rustler formation of the Permian Basin in southeastern
New Mexico is known to exhibit several categories and
scales of porosity [Holt, 1997] including intercrystalline,
interparticle, fracture, and vuggy porosities (Figure 1). The
multiple types and scales of porosity are also clearly
observable in Culebra Dolomite cores (Figure 2). The
breakthrough data analyzed in this work were collected on
the B core for the conservative tracers 3H and 22Na, and the
retarding tracer 232U. Core B, pictured in Figure 2, was
selected because its length-to-diameter ratio (50.9 cm to

14.5 cm) was such that boundary effects can be neglected,
thus permitting the use of the analytical solution developed
for a 1D semi-infinite 0 � x <1ð Þ transport domain. Dry
bulk density 	bulk ¼ 2400 kg=m 3 and total porosity �T ¼
0:14 were determined by standard laboratory methods
[Lucero et al., 1998]. Additional details on experiment
setup, solute injection, flow rates, and effluent analysis, are
available in Lucero et al. (1998) and are not repeated here.

[14] Figure 3 shows normalized concentrations plotted
against pore volume (PV) computed using �T. Solute injec-
tion pulses were longer in duration for tests shown in Fig-
ure 3b than for those in Figure 3a. Plotting data on a log-
log scale as in Figure 3b clearly shows that the effluent was
not collected for a sufficiently long time to completely
reveal the late-time tracer behavior. A long breakthrough
tail is characteristic of mobile-immobile-domain mass
transfer for conservative tracers. Despite this shortcoming,
the data can be used to assess the performance of the three
models. The data in Figure 3a show early breakthrough for
both conservative tracers [Lucero et al., 1998], suggesting
the occurrence of preferential flow in an advective porosity
that is significantly smaller than the total core porosity �T.
Breakthrough data for 232U are shown in Figure 4 (22Na
data from the same test are included for comparison). 232U
breakthrough clearly occurs much later than 22Na because
the former sorbs onto the Culebra Dolomite. Peak 232U
concentration arrival occurs around 1 PV, about four times
later than 22Na. Using the single-porosity model, Lucero
et al. (1998) estimated the 232U retardation factor to be 4.5
and 3.7, from B3 and B7 data, respectively. For the dual-
porosity model, they obtained mobile- and immobile-zone
retardation factor values of Rm ¼ 1:14;Rim ¼ 65:4f g and
Rm ¼ 4:35;Rim ¼ 1:00f g, from B3 and B7 data, respec-

tively. The value of Rim ¼ 65:4 appears to be an error in re-
cording the estimated value.

3.1. Parameter Estimation

[15] To estimate model parameters we let cobs be the
breakthrough data vector, ccal hð Þ the model-calculated con-
centrations vector, and h the vector of estimated model pa-
rameters. For 3H and 22Na, h ¼ �m; �L; �; �; tinj

� 	
, whereas

for 232U, h ¼ Rm;Rim ; �; �ð Þ. Injection pulse concentration
cinj

� 	
was fixed for tests B1, B2, B3, and B7, but was esti-

mated for tests B4, B5, and B8. Increased test durations for
B4, B5, and B8 made it more difficult to maintain constant
injection concentrations over prolonged test periods, result-
ing in injection concentrations that varied appreciably with
time [Lucero et al., 1998]. Since this temporal variability is
not incorporated explicitly into the solution, and its func-
tional form in unknown, the injection concentrations for
tests B4, B5, and B8 are treated as unknown constants and
are estimated from breakthrough data. Initial concentration
c0ð Þ was fixed for all tests and was determined from efflu-

ent concentration values measured prior to solute injection.
The truncated lognormal distribution !D 2 0; 1000½ �ð Þ was
used to describe the mass-transfer coefficient distribution.
The advective porosity �mð Þ, dispersivity, and the injected
pulse (tinj ) duration were estimated with the multirate
model for 22Na data and used as fixed input parameters
when estimating the retardation factor and !D distribution
parameters from 232U data. Distribution parameters were
also estimated for 232U because !D is a function of the
tracer-specific molecular diffusion coefficient.
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[16] We examine model sensitivity coefficients to deter-
mine whether all model parameters are estimable from
available data. Sensitivity coefficients are derivatives of
model-predicted effluent concentrations with respect to
model parameters, which are elements of the Jacobian ma-
trix (J). They provide a measure of parameter identifiabil-
ity, because the determinant of JT J must be sufficiently
larger than zero to be estimable from data [€Ozişik and
Orlande, 2000]. Small sensitivity coefficients imply
jJT Jj � 0 and the inverse problem is ill conditioned. Here,
sensitivity coefficients were estimated with PEST [Doherty,
2010] using central differences, and their variation with
time is shown in Figure 5 for (a) short (B2) and (b) long
(B4) solute injection pulses. The sensitivities are suffi-
ciently larger than zero to permit estimation of all parame-
ters from breakthrough data. The coefficients are also
linearly independent for much of the time data were col-
lected. Apparent linear dependence is restricted to late-time

data, implying parameters cannot be uniquely estimated
solely from late-time data. The parameter sensitivity curves
obtained in both short- and long-pulse injection tests show
a weak symmetry between two opposite-sign branches
associated with arrival and elution tracer breakthrough
waves. Absolute values of sensitivity coefficients are larg-
est when measured concentrations are changing most rap-
idly. Variation of sensitivity coefficients with time for
retarding tracer 232U in test B3 are shown in Figure 6.
These are also sufficiently larger than zero indicating that
parameters, including Rm and Rim , are estimable from
breakthrough data.

[17] Parameter estimation was performed using PEST.
The optimal vector of model parameters hopt

� 	
was

obtained by minimizing the sum of squared residuals,

� hð Þ ¼ e hð ÞT e hð Þ; ð9Þ

Figure 1. Different types and scales of Culebra Dolomite porosity. Anhydrite and mudstone of adja-
cent Rustler members act as confining layers.

Figure 2. Culebra Dolomite horizontal core B showing vuggy porosity, fractures, and vug-filling min-
erals. Foreground grid marks are inches.
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where e ¼ cobs � ccal hð Þ is the vector of residuals. PEST
uses the Levenberg-Marquardt nonlinear optimization algo-
rithm [Marquardt, 1963]. Parameter estimates and multi-
rate model fits to data are compared to those obtained using
single-porosity and double-porosity models. Parameter val-
ues obtained by inverting 3H and 22Na breakthrough data
with the all three models are summarized in Table 1; pa-
rameters estimated from 232U data are in Table 2. Because
tinj was not reported in the original study [Lucero et al.,
1998], it was estimated from data. The !D column also
includes the mean h!Dið ) and variance (�2

�D
) of the Dam-

köhler-I number determined from the estimated values of �̂
and �̂. The last three rows of Table 1 show estimated model
parameters from simultaneous inversion of B4, B5, and B8
tracer-test breakthrough data. Parameter estimates are com-
parable to those from individual tests, even though the
three tests were conducted with flow rates ranging over an
order of magnitude (0.05, 0.1, and 0.5 mL/min). This indi-
cates minimal model structural error with regard to simulat-
ing average pore-water velocity.

[21] Model fits to data for parameter values listed in Ta-
ble 1 are shown in Figure 7 (B1–B3, B7) and Figure 8 (B4,
B5, B8) for 3H and 22Na. Figures are in pairs of (a) linear
or semi-log (concentration on linear scale) and (b) log-log

plots, to illustrate how models match data over multiple
time scales and over several concentration orders of magni-
tude. The two plotting scales are complementary because
an apparently good model fit on a semi-log or linear plot
may be a poor fit on log-log scale, and vice versa. Model-fit
results for 232U data are shown in Figure 9. Lucero et al.
(1998) parameter estimates are comparable to those
obtained here using single-porosity and double-porosity
models, but they did not estimate tinj .

[22] Parameter estimation using the multirate model
yielded improved model fits to breakthrough data compared
to those obtained using single-porosity and double-porosity
models (see R2 values in Table 1). Mobile-domain porosity
values (�m) estimated with single-porosity and double-po-
rosity models were comparable (means of 0.069 and 0.065,
respectively), but were appreciably larger than those
obtained using the multirate model (mean of 0.045). Dis-
persivity (�L) values were consistently largest for the sin-
gle-porosity model (mean of 12.1 cm) and smallest for the
multirate model (mean of 3.76 cm) for all tests. Table 1
shows there is significantly more variability in �L estimated
using the single-porosity model than those obtained using
the double-porosity and multirate models (standard devia-
tions of 4.2 cm, 2.4 cm, and 2.3 cm, respectively). The

Figure 3. Normalized concentrations plotted against PV for (a) short-injection-pulse tests B1, B2, B3,
and B7, and (b) long constant-concentration-injection tests B4, B5, and B8. Vertical line marks one PV
calculated using total porosity. Qx in (b) is volume flow rate in mL/min.

Figure 4. Concentrations plotted against PV for 22Na (conservative) and 232U (retarding) in tests B3
(a) and B7 (b). Vertical line marks one PV calculated using total porosity.
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Damköhler-I numbers estimated with the double-porosity
model appear closer (though not equal) to the geometric
mean (h!Dig ¼ e�) of the multirate model than to the mean
(h!Di ¼ e�þ�

2=2). Results show absolute values of � and �
for the 3H tracer test (B1) are smaller than those obtained
with the tracer 22Na. With exception of B7, the 22Na tests
yielded consistent values of � and � with j�j > 1:0 and
� � 1:9. Those obtained from 232U data (Table 2) are sig-
nificantly different.

[23] For the nonconservative tracer 232U, �m and �L

were estimated with the 22Na tracer from the same experi-
ment, because these parameters are intrinsic transport me-
dium properties. Estimated retardation factors from tests
B3 and B7 are listed in Table 2. For test B3, fitting the mul-
tirate and double-porosity models to data yields Rm values
appreciably smaller than the value obtained with single-po-
rosity model. This is because retardation is distributed
between the mobile and immobile domains in the former
two models. It is surprising to find the multirate model Rim

in test B3 is significantly larger than the double-porosity
model Rim . Intuitively, one would expect results similar to

those obtained from test B7, because delayed breakthrough
is partly due to matrix mass transfer and partly due to solid-
phase sorption. In addition, the retardation factors, Rm and
Rim , estimated with the double-porosity and multirate mod-
els showed significant differences between test B3 and B7.
These two results may be attributable to interplay between
multirate mass-transfer and nonlinear sorption kinetics,
where retardation is concentration dependent. The models
all assume linear instantaneous sorption, variability in re-
tardation factors between tests B3 and B7 may be an arti-
fact of inherent model deficiency to account for nonlinear
sorption kinetics. 232U column tests B3, B6 (not discussed
here), and B7 were performed serially on the same core. B3
had the lowest initial relative 232U concentration with
c0=cinj ’ 2� 10�5, while for B7 c0=cinj ’ 10�3. B7
was performed after the core had already been conditioned
with 232U from the previous two tests. These initial concen-
tration differences are expected to affect the estimated re-
tardation factors in the presence of nonlinear sorption
kinetics.

3.2. Predictive Analysis

[24] All models approximate a complex reality, and the
discrepancy between reality and mathematical models is
commonly referred to as model structural error. It is a mea-
sure of model deficiencies that lead to prediction errors
even when the models are supplied with optimal input pa-
rameters. Structural error cannot be attributed to measure-
ment errors inherent in observations [Doherty and Welter,
2010] and typically decreases as models become more real-
istic with increased understanding of underlying causal
mechanisms of processes. A measure of structural error
would thus provide an objective criterion for model
selection.

[25] Predictive uncertainty analysis presented here is
used to demonstrate the structural deficiency of the single-
porosity and double-porosity models, and how this defi-
ciency leads to increased model prediction error. The anal-
ysis was undertaken with PEST for test B8. Details for
conducting a PEST predictive uncertainty analysis can be
found elsewhere [James et al., 2009; Tonkin and Doherty,
2009; Tonkin et al., 2007; Gallagher and Doherty, 2007].
Using parameter values at optimality (Table 1) and the

Figure 5. Breakthrough concentration sensitivities to estimated multirate model parameters for (a)
short- (B2) and (b) long-pulse (B4) 22Na tests. Concentration data are included for reference (those in (b)
are scaled by 0.5).

Figure 6. Breakthrough concentration sensitivities to
estimated multirate model parameters for 232U in test B3.
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associated covariance matrix, 500 random parameter sets
were generated and projected onto the Jacobian matrix null
space. No clear null space was found from the singular
value decomposition of the Jacobian matrix, therefore we
assumed the null space to be a single dimension in these
low-dimensional (� 6) models. Model predictions com-
puted beyond the last observation based on the 500 parame-
ter sets generated in this manner are shown in the left
column of Figure 10 for (a) single-porosity, (c) double-po-
rosity, and (e) multirate models. They show significant
model prediction uncertainty for the single-porosity model,
and only moderate uncertainty for the other two models.
Using these parameter sets projected onto the null space as
initial guesses, further minimization of � was undertaken,
using the Jacobian matrix associated with the calibrated
state. Using the value of � at optimality �opt

� 	
, the 500

null-space-projected parameter sets were processed with
PEST to minimize the objective function such that
� � 2�opt . Predictions associated with the recalibrated pa-
rameter sets are shown in the second column of Figure 10
for (b) single-porosity, (d) double-porosity, and (f) multi-
rate models. As would be expected, post recalibration
model predictions for all three models show a marked

decrease in model prediction uncertainty from the precali-
bration predictions. The late-time �3=2 and �5=2 slope
lines are included, which are diagnostic of double-porosity
and multirate models [Haggerty et al., 2000]. Clearly, the
model behavior projected beyond the time of the last obser-
vation follows the �3=2 slope for the dual-porosity model,
and the �5=2 slope for the multirate mass transfer model.

[26] Recalibration single-porosity model projections
show significant underestimation of late-time observations.
Dual-porosity model predictions are skewed toward overes-
timating the late-time observations. Multirate model pro-
jections are uniformly centered about the data and are
consistent with the observed trend of the elution curve. Fig-
ure 11 shows histograms of residuals associated with the
three models plotted at (a) t ¼ 4:1 and (b) t ¼ 4:7 days.
Whereas the residuals computed at t ¼ 4:7 days with the
multirate model have zero bias, those of the double-poros-
ity and single-porosity models show clear bias to negative
(concentration overestimation) and positive (underestima-
tion) values. Only the multirate model shows minimal bias
about the observed late-time data, even though its ensemble
of predictions has comparable spread (variance) to those of
the double-porosity model beyond the last observation. The

Table 1. PEST-Estimated Parameters Using Conservative Tracer Breakthrough Data

Test Qx (mL/min) Model �m �L (cm) !D � � tinj (hours) R2 �AIC c

B1 3H 0.1
Single 0.081 7.99

0.735
(1.36, 7.43) �0.498

1.28
1.33 0.982 902

Double 0.073 4.83 1.69 0.997 215
Multirate 0.060 2.98 1.56 0.998 0
Single 0.065 7.30 2.42 0.986 974

B2 22Na 0.1 Double 0.061 5.14 0.538
(2.10, 217.9) �1.22 1.98

3.48 0.997 476
Multirate 0.042 2.18 2.97 0.999 0
Single 0.062 8.55 1.70 0.989 881

B3 22Na 0.1 Double 0.058 6.04 0.395
(1.54, 70.3) �1.28 1.85

2.17 0.996 474
Multirate 0.037 2.03 2.01 0.999 0
Single 0.065 17.5 310.3 0.995 466

B4 22Na 0.1 Double 0.062 9.38 0.209
(0.896, 19.7) �1.73 1.80

312.4 0.998 117
Multirate 0.045 3.37 309.8 0.999 0
Single 0.070 16.4 612.4 0.997 127

B5 22Na 0.05 Double 0.069 10.7 0.229
(0.318, 8.21) �1.69 2.10

611.8 0.998 0
Multirate 0.051 5.72 610.1 0.998 13
Single 0.071 14.3 0.479 0.989 717

B7 22Na 0.5 Double 0.066 9.89 0.473
(0.398, 0.314) �0.921 0.831

0.601 0.999 183
Multirate 0.061 8.46 0.580 0.999 0
Single 0.068 12.9 65.2 0.997 496

B8 22Na 0.5 Double 0.065 7.01 0.289
(1.22, 45.8) �1.53 1.86

64.6 0.999 379
Multirate 0.047 3.01 64.8 1.000 0
Single 0.068 15.8 a 0.996 676

Bf4,5,8g Double 0.066 9.38 0.230
(1.48, 107.9) �1.57 1.98

b 0.998 75
Multirate 0.045 3.46 c 0.998 0

atinj ¼ f305.8, 619.3, 65.0g hours for Bf4,5,8g.
btinj ¼ f306.6, 619.0, 65.3g hours for Bf4,5,8g.
ctinj ¼ f305.2, 615.2, 64.9g hours for Bf4,5,8g.

Table 2. PEST-Estimated Parameters Using 232U Breakthrough Data

Test Model Rm Rim !D � �
tinj

(hours) R2

B3
Single 3.65

0.754
(1.44, 176.4) �1.86 2.11

1.92 0.946
Double 2.36 1.80 2.33 0.995
Multirate 1.63 5.68 3.00 0.998
Single 3.49 2.33 0.987

B7 Double 3.52 2.83 0.022
(66.6, 2.45�107) �2.21 3.58

2.15 0.993
Multirate 3.48 1.30 2.12 0.991
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residual bias signifies model structural error associated
with single-porosity and dual-porosity models. Comparing
results in Figure 11a and 11b shows residual bias and sin-

gle-porosity and double-porosity model structural error
increase with time, while bias for the multirate model does
not show appreciable change. At time t ¼ 4:1 days, the

Figure 7. Model fits to core B 22Na breakthrough data for short-pulse tests (B1, B2, B3, and B7) on
(a) semi-log and (b) log-log scales.
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dual-porosity model residuals have zero mean and are
nearly coincident with the multirate model. However, at
t ¼ 4:7 days there is a growth in double-porosity model
prediction bias. Prediction error due to model structural
error increases with time.

[27] Figure 12 shows histograms of 500 calibrated multi-
rate model parameter sets obtained from the posterior
NSMC analysis described above. These distributions pro-
vide a measure of parameter estimation uncertainty. How-
ever, as indicated by Keating et al. (2010), parameter sets
obtained using NSMC analysis do not necessarily consti-
tute a sample of the posterior density function of the param-
eters in the strict Bayesian sense. This is especially true

with low-dimensional models (at most six parameters for
the present case) for which a proper null space may not
exist. This can be seen by comparing the posterior distribu-
tion obtained with the NSMC analysis with those obtained
to a formal Bayesian approach using the DiffeRential Evo-
lution Adaptive Metropolis (DREAM) algorithm [Vrugt
et al., 2008, 2009a, 2009b]. For the problem considered
here with six parameters to be estimated from log-trans-
formed concentrations, DREAM ran six different Markov
chains, and after a burn-in period of about 35,000 model
runs per chain, we obtained the parameter posterior distri-
butions shown in Figure 13. DREAM required 300,000
total model runs. Clearly, the computational demands of

Figure 8. Model fits to core B 22Na breakthrough data for long-pulse tests (B4, B5, and B8) on (a) lin-
ear and (b) log-log scales.
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Figure 9. Model fits to 232U breakthrough data from tests B3 and B7 on semi-log plots. Parameters
shown in plots are for the multirate model.

Figure 10. Model prediction uncertainty evaluated using posterior Monte Carlo analysis on B8 data
with the (a and b) single-porosity, (c and d) double-porosity and (e and f) the multirate models (left and
right columns represent before and after recalibration, respectively). Double-porosity model predictions
approach �3=2 slope while the multirate model predictions approach �5=2 slope.

MALAMA ET AL.: MODEL SELECTION VIA AIC AND STRUCTURAL MISFIT ANALYSIS

3142



formal Bayesian analysis with DREAM can be prohibi-
tively high [Keating et al., 2010]. The parameter posterior
distributions shown in Figure 13 show the final 10,000
model runs. Normal distributions are included in the figure
for comparison. The results show that posterior distribu-
tions obtained with DREAM have smaller variances and
are more Gaussian than those obtained with the PEST pos-
terior NSMC analysis. While PEST results indicate greater
variability in estimated parameter values that calibrate the
model, DREAM results indicate that parameter estimation
uncertainty is actually smaller. The low-dimensionality of
the parameter space leads to an overestimation of parame-
ter estimation uncertainty using null-space Monte-Carlo
analysis. Thus, PEST-based parameter estimation uncer-
tainty, obtained with NSMC analysis for a significantly
lower computational cost, may be viewed as the upper

bound of the true uncertainty computed with DREAM, for
cases like the low-dimensional models used here.

3.3. Statistical Model Selection

[28] For a given number of observations, as models
become more realistic, the increase in model complexity
and the number of parameters leads to increased parameter
estimation uncertainty because the number of observations
available per estimated parameter decreases. In this case,
model complexity and the number of parameters increase
from the single-porosity to the multirate model, but the re-
spective model parameters are estimated with the same
number of observations. Hence, statistical criteria that
account for decreased information content due to increased
model complexity may be used to augment model selection
based on structural error evaluation. The corrected Akaike

Figure 11. Residual histograms computed at (a) t ¼ 4:1 days and (b) t ¼ 4:7 days with recalibrated
model runs.

Figure 12. Parameter histograms after recalibration with PEST posterior Monte Carlo analysis for test
B8. Red line indicates PEST-estimated optimal parameter values and green lines are PEST-estimated
95% confidence intervals.
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Information Criterion, AIC c [Hurvich and Tsai, 1997;
Anderson and Burnham, 1999; Poeter and Anderson,
2005] is used here for this purpose

AIC c ¼ 2n log �eð Þ þ
k

n� k � 1


 �
; ð10Þ

where n is the number of observations, k is the number of
estimated parameters, and �e is the standard deviation of

residuals at optimality. The first term typically decreases as
model complexity increases, representing improved model
fit to data, while the second penalty term increases.
Because AIC c is a relative measure, it is preferable to use
differentials of AIC c [Posada and Buckley, 2004], denoted
�AIC c, over all the three models under consideration. For
the ith model, �AIC c;i ¼ AIC c;i �min AIC c, where
min AIC c is the smallest AIC c value among all models for
this dataset. The AIC c are computed using PEST and
�AIC c are listed in Table 1. The minimum AIC c corre-
sponds to the multirate model, except in test B5, where it
corresponds to the double-porosity model. Clearly, the rela-
tive AIC c values confirm the results of predictive analysis
that the multirate model is better suited than the other two
models to describing transport in the Culebra Dolomite
core.

[29] For time series data with high autocorrelation, the
penalty for model complexity is vanishingly small when
no k and the AIC c reduces to a ranking of the models by
residual variance. However, this is only a problem when
the increased number of observations does not significantly
increase the information content of the observation about
the estimated parameters. We present, a separate optimiza-
tion with PEST using only 30 of the original 269 data in
test B8 to determine whether the ranking of the three mod-
els with the AIC c would change appreciably. The resulting
model fits are shown in Figure 14. Basically, the same
results were obtained with the multirate model outperform-
ing the other two models. This is because the estimation
variance is always smallest for the multirate model, and

Figure 13. Posterior model parameter distributions estimated with DREAM for test B8. Red curves
are normal distributions corresponding to mean and variance computed from data.

Figure 14. Model fits to test B8 data where only 30 data
points were used in the optimization. The AIC c for each
model is included in parenthesis.
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artificially reducing n only has a modest effect on the final
outcome. It should also be noted that a large n allows one
to better capture the variability in the data due to random
measurement error, which are assumed to be Gaussian in
minimization of the sum of squared residuals. Furthermore,
the number of parameters to be estimated increased by 2
from the single-porosity to the multirate model, while the
estimation variance also changed by a factor of about 2
(7:6� 10�6 to 3:2� 10�7).

[30] The temporal structure of the residuals was exam-
ined to determine whether they show strong temporal auto-
correlation (Figure 15). It can be seen that moderate
autocorrelation is limited to very early time. Additionally,
in this early-time period, it can be seen that only the single-
porosity model residuals show appreciable temporal auto-
correlation, which decreases as one moves to the multirate
model. The computed responses of the single-porosity
model show strong departure from observed behavior. As
can be seen in Figure 15, the residuals obtained with the
multirate model for the long tests (B4, B5, and B8) show
only moderate temporal autocorrelation (at early time) and
are mostly randomly distributed about zero. It should also
be noted that the statistical rigor of DREAM does not
depend on the distribution of the residuals but on the sam-
pling of the parameter space for parameters that minimize
the sum of squared residuals.

4. Discussion and Conclusions

[31] We reanalyzed core-scale 3H and 22Na breakthrough
data from experiments conducted by Lucero et al. (1998)
on a Culebra Dolomite core using the single-porosity, dou-
ble-porosity, and the multirate model of [Haggerty and Gor-
elick, 1995, 1998] for a semi-infinite domain to determine
which of the models best describes the observed break
through behavior. Previous analysis of these data by Lucero
et al. (1998) had suggested that the single-porosity model
was sufficient to describe core-scale Culebra transport, a
finding at odds with conclusions based on field-scale tests
conducted in the Culebra Dolomite formation [Meigs et al.,
2000; McKenna et al., 2001]. In the results presented herein,
the multirate model yielded better model fits to the data and
significantly different parameter values from those obtained
with the single-porosity and double-porosity models. The
mobile-domain porosity and dispersivity values obtained
with the multirate model were consistently lower than those
obtained with the other two models because solute disper-
sion in the core is also accounted for by porosity variability
encapsulated in the distribution parameters of the mobile/
immobile domain mass-transfer coefficient. The smaller dis-
persivity obtained with the multirate model is more plausible
than those obtained with the other models, considering the
length scale of the experiments.

Figure 15. Temporal residuals of tests B4, B5, and B8 and the histogram of the test B8 residuals.
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[32] Model-prediction uncertainty was evaluated using
breakthrough data from test B8 and post-calibration NSMC
analysis as implemented with PEST. The prediction uncer-
tainty analysis revealed the presence of model structural
error in the single-porosity and double-porosity models as
demonstrated by significant bias in the residuals of model
predictions made with these models with optimal parameter
values. The residual bias increased with time over the span
of the elution curve where breakthrough data are available,
showing increased departure of model predictions from the
observed trend (�5=2 slope line) of breakthrough data. The
parameters associated with the NSMC predictive analysis
may be viewed as samples from the posterior parameter
distributions and were used to evaluate parameter estima-
tion uncertainty. The posterior distributions estimated using
NSMC analysis were compared to those obtained with the
more rigorous Bayesian analysis using the DREAM algo-
rithm. The comparison suggests that measures of parameter
estimation uncertainty obtained with NSMC may be treated
as upper bounds of the true posterior distributions, particu-
larly for low dimensional models where a true null space
may not exist.

[33] The analysis presented herein clearly shows the re-
sidual bias associated with the single-porosity and double-
porosity models increases with time indicating increasing
systematic departure of predicted from observed behavior
due to the inherent structural deficiencies of these models.
The multirate model residuals, however, maintain minimal
bias with time, indicating low model structural error.
Although the predictions with the double-porosity and mul-
tirate models beyond the last observation have comparable
variance, only the residuals of the multirate model have
zero bias. These results show that the multirate model is
the most appropriate of the three models for describing sol-
ute breakthrough behavior in Culebra core even though the
three models yield parameters with comparable variances
of posterior distributions. This finding was further con-
firmed using statistical model selection using the differen-
tial AIC c where the AIC c value was typically smallest for
the multirate model. The one test where the double-porosity
model yielded the smallest differential AIC c value, the
value associated with the multirate model was only margin-
ally larger (0.5%). More elution data would be needed to
resolve this minor departure from the norm given that the
two models predict disparate long-term tailing behaviors.
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